Recently asked questions in Kochi mmd and Class 2 Numerical solutions

Search

12 February 2024

199.NA September 2022 Q.8(b)

February 12, 2024 Posted by AK No comments

A ship of 12000 tonne displacement has a rudder 15 m2 in area, whose centre is 5 m below the waterline. The meta centric height of the ship is 0.3 m and the centre of buoyancy is 3.3 m below the waterline. When travelling at 20 knots the rudder is turned through 30°. Find the initial angle of heel if the force Fn perpendicular to the plane of the rudder is given by: Fa=577 A v2 sin𝜶 N, Allow 20% for the race effect.

         If you are noticing some error in problems kindly comment below.Thanks

Given


Δ = 12000 t

A = 15 m2
GM = 0.3 m
COB = 3.3 m below water line
V = 20 knots
α = 300

To find


1. Initial angle of heel , θ


Solution



Consider that rudder is turned by an angle α and let
Fn = Rudder force normal to the plane of rudder
Ft = Transverse rudder force

Consider Triangle ABD

Sin α = Fn / F
Fn = F sin α --------------------------(1)

Consider Triangle ABC

Cos α = Ft / Fn
Ft = Fn cos α -------------------------(2)

Substituting Fn value from (1)


Ft = F cos α sin α


But in the question above it is given that Rudder force Fn = 577 A x V2 x Sin α x N


So substituting in (2) ---------------->


Ft = 577 A x v
x Sin α x cos α  N

race is the additional flow past the rudder that is cause by the propeller turning at a faster speed than the vessel is moving through the water

Consider that race effect is 20%. This will affect ship speed.

So ship speed = V x 1852/3600

Considering race effect
Ship speed = 1.2 x V x 1852/3600
                   = 1.2 x 20 x 1852/3600
                v = 12.35 knots

Ft = 577 A x v2 x Sin α x cos α N
    = 577 x 15 x 12.352 x sin 30 x cos 30  N
    = 571.61 kN

NL = Distance from COB to centre of the rudder
      = 5 - 3.3
      = 1.7 m

Heeling moment = Ft x NL x cos θ ----------------------------(3)
                           = 571.61 x 1.7 x cos θ
                           = 971.7 x cos θ kN m

Righting moment = Δ x g x GM x sin θ -----------------------(4)
                                                  
When heel is steady 

Heeling moment = Righting moment

 Ft x NL x cos θ = Δ x g x GM x sin θ
   971.7 x cos θ = 12000 x 9.81 x 0.3 x sin θ
   971.7 x cos θ = 35316 x sin θ
     sin θ / cos θ = 0.0275
                tan θ = 0.0275

Angle of heel θ = 10 571

198.NA September 2022 Q.7(b)

February 12, 2024 Posted by AK No comments

 A ship of 22000 tonne displacement is 160 m long and MCTI cm 280tonne m, waterplane area 3060 m2 centre of buoyancy 1 m aft of midships and centre of flotation 4 m aft of midships. It floats in water of 1.007 t/ m3 at draughts of 8.15 m forward and 8.75 m aft. Calculate the new draughts if the vessel moves into sea water of 1.026 t/ m2 Calculate the metacentric height of the vessel.


Given 

Δ = 22000 t

L = 160 m

MCT1 = 280 tm

Aw = 3060 m2

COB = 1 m aft

COF = 4 m aft

ƍ = 1.007 t/m3

df = 8.15 m

da = 8.75 m

ƍs = 1.026 t/m3


To find

1.df new

2.da new

3. GM


Solution

Change in mean draught = ((100 x Δ) / Aw) x (୧s - ୧) / (୧s x ୧)
                                        = (100 x 22000)/3060) x (1.026 - 1.007) / (1.026 x 1.007)

                                        = 13.22 cm reduction (As moves to SW)


Distance from COF to COB = COF - COB (As both are aft of midship)
                                       FB = 4 - 1
                                             = 3 m


Change in trim =  (Δ x FB (୧s - ୧)) / (MCT1 cm x ୧s)
                        = (22000 x 3 (1.026 - 1.007)) / (280 x 1.026)

                    t   = 4.5 cm by stern (Ship moves from fw to sw trim by stern)


Draught change FWD = - t/L (L/2 + COF)
                                    = - 4.5 / 160 x (80 + 4)

                                    = - 2.36 cm


Draught change AFT = + t/L (L/2 - COF)
                                    = + 4.5 / 160 x (80 - 4)

                                    = + 2.14 cm


1. df new = Initial draught FWD + change in mean draught + draught change FWD

                   = 8.15 - 0.132 - 0.024

                   = 7.994 m

2. da new  = Initial draught AFT + change in mean draught + draught change AFT

                  = 8.75 - 0.132 + 0,021

                  = 8.639 m 

3.MCT1 cm = Δ x GML / 100 x L           

          3060 =(22000 x GM) / (100 x 160)

            GM = 2225.5 m 



07 February 2024

197.NA September 2022 Q.6(b)

February 07, 2024 Posted by AK No comments

 An oil tanker of 17000 tonne displacement has its centre of gravity 1 m aft of midships and has 250 tonne of oil fuel in its forward deep tank 75 m from midships. This fuel is transferred to the after oil fuel bunker whose centre is 50 m from midships. 200 tonne of fuel from the after bunker is now burned.

Calculate the new position of the centre of gravity: (a) after the oil has been transferred (b) after the oil has been used.


Given

Displacement = 17000 t

mf = 250 t

df = 75 m fwd of midship

KG = 1m aft of midship

ma = 200 t

da = 50 m fwd


To find

1. COG after transfer

2. COG after consumption


Solution

1) Case 1 after transfer

We know that shift in COG = mass moved x distance / Displacement

                                           = 250 x (75 +50) / 17000

                                           = 1.838 m aft


The new position of COG = old COG + shift in COG  

                                          = 1 + 1.838

                                          = 2.838 m aft


2) Case 2 after consumption

New position of COG = (Displacement x KG) - (ma x da) / (17000 - 200)

                                   = (17000 x 2.838) - (200 x 50) / 16800

                                   = 2.277 m aft 

199.MET September 2022 Q.10(b)

February 07, 2024 Posted by AK No comments

 A 4 40V shunt motor takes an armature current of 30 A at 700 rev/min. The armature resistance is 0.7 ohm. If the flux is suddenly reduced 20 per cent, to what value will the armature current rise momentarily? Assuming unchanged resisting torque to motion, what will be the new steady values of speed and armature current? Sketch graphs showing armature current and speed as functions of time during the transition from initial to final, steady state conditions.




             If you are noticing some error in problems kindly comment below.Thanks

Given

V = 400 V
Ia = 30 A
N1 = 700
Ra = 0.7 Ω
Flux reduced to 20 %. Therefore Φ2 = 0.8 Φ1



To find

1.Momentarily increase in armature current
2.Speed & armature current
3.Graph



Solution

As we know that the voltage equation of motor is
V = Eb + Ia Ra
440 = Eb + (30 x 0.7)
 Eb = 440 - 21
      = 419 V

We know that Eb ∝ Φ N

Consider emf Eb1 and flux Φ1 as initial values and emf Eb2 and flux Φ2 as after 20% flux reduction.
Taking rpm as constant.
Therefore Eb ∝ Φ

Eb1 / Eb2 = Φ1 / Φ2
419 / Eb2 = Φ1 / 0.8 Φ1
         Eb2 = 335.2 V

1. Again V = Eb2 + Ia2 Ra
           440 = 335.2 + Ia2 x 0.7
   0.7 x Ia2 = 104.8

    Momentarily increase in armature current Ia2 = 149.71 A

2. As we know that torque T ∝ Φ Ia

    It is given that after flux reduction torque remains constant.
 
    Therefore T1 = T2
              Φ1 Ia1 =  Φ2 Ia2
            Φ1 x 30 = 0.8  Φ1 x Ia2
                    Ia2 = 30 / 0.8

    Armature current Ia2 = 37.5 A

    V = Ebnew + Ia2new  Ra
    440 = Ebnew + (37.5 x 0.7)
    Ebnew = 413.75 V

    We know that Eb ∝ Φ N

     Eb1 / Ebnew = ( Φ1 / Φ2 ) x ( N1 / N2 )
     419 / 413.75 = (Φ1 / 0.8 Φ1) x (700 / N2)
           1.012 N2 = 1.25 x 700
                     N2 = 875 / 1.012

          Speed N2 = 864.6 rpm

198.MET September 2022 Q.9(b)

February 07, 2024 Posted by AK No comments

   A 200V, long-shunt compound-wound generator has a full-load output of 20kW. The various resistances are as follows; armature (including brush contact) 0.15 ohm, series field 0.025 ohm, interpole field 0.028 ohm, shunt field (including the field-regulator resistance) 115 ohm. The iron losses at full load are 780W, and the friction and windage losses 590W. Calculate the efficiency at full load.


Given

V = 200

KW = 20 = 20000 W

Ra = 0.15 ohm

Rsef = 0.025 ohm

Rif = 0.028 ohm

Rshf = 115 ohm

Li = 780 W

Lf = 590 W


To find

1. Efficiency


Solution

Shunt field current, Ishf = V / Rshf

                                       = 200 / 115

                                       = 1.74 A

We know that P = V x I

               20000 = 200 x I

  Load current  = 100 A

Therefore Armature current  I = 100 + 1.74 = 101.7 A


Cu loss in armature = I2R

                             = 101.72 x (0.15 + 0.025 + 0.028)

                             = 2099.6 W = 2.1 KW


Cu loss in shunt field = Ishf x V

                                     = 1.74  x 200

                                     = 348 W = 0.348 KW


Total Cu loss = 2.1 + 0.348 = 2.448 KW

 

 Efficiency = output / input

                   = 20 / (20 + 2.448 + 0.59 + 0.78)

                   = 20 / 23.818

                   = 0.839

                   = 83.9 %   

197.MET September 2022 Q.8(b)

February 07, 2024 Posted by AK No comments

  The star-connected rotor of an induction motor has a stand-still resistance of 4.5 ohms/phase and a resistance of 0.5 ohm/phase. The motor has an induced emf of 50 V between the slip-rings at stand-still on open circuit when connected to its normal supply voltage. Find the current in each phase and the power factor at start when the slip-ring is short-circuited


Given

X = 4.5 ohm   {Standstill resistance = Reactance}

R = 0.5 ohm

E = 50 V (Line voltage)

                

To find

1. Iph

2. cos φ 


Solution


In star connection  Eph = Eline / √3

                                     = 50 / √3

                                     = 28.87 V

Zph = √(R2+X2)

        = √(0.5+ 0.452)

        = 4.53 ohm


Iph = Vph / Zph

      = 28.87 / 4.53 

      = 6.37 A


cos φ = R/Z

          = 0.5 / 4.53

          = 0.11

196.MET September 2022 Q.7(b)

February 07, 2024 Posted by AK No comments

  A 230 V dc shunt motor runs at 1000 rpm and takes 5A. The armature resistance of the motor is 0.025 Ω and shunt field resistance is 230 Ω. Calculate the drop in speed when the motor is loaded and takes the line current of 41 A. Neglect armature reaction.

IF YOU ARE NOTICING ANY ERROR KINDLY COMMENT BELOW

 

Given

V= 230 

N1 = 1000 

Im = 5A

Ra = 0.025

Rf = 230

Il = 41 A

 

To find 

Drop in speed


Solution


Field current, If = V / Rf 

                          = 230 / 230

                          = 1 A

Armature current, Ia1 =  Im - If

                                   = 5 - 1

                                   = 4 A

 

When motor is loaded Armature current ,  Ia2 = Il - If

                                                                          = 41 - 1

                                                                          = 40 A

We know that Back emf Eb = V - Ia x Ra

So Eb1 = 230 - (4 x 0.025)

             = 229.9 V

Eb2 = 230 - (40 x 0.025) 

        = 229 V

We know that (Eb2 / Eb1) = (N2 / N1) x (φ2 / φ1)

Assuming that φ1 = φ2

 So (Eb2 / Eb1) = (N2 / N1)

N2 = (Eb2 x N1) / Eb1

      = (229 x 1000) / 229.9

      = 996.08 rpm


Drop in speed = N1 - N2

                        = 1000 - 996.08

                        = 3.92 rpm

195.MET September 2022 Q.6(b)

February 07, 2024 Posted by AK No comments

Three impedances Z=5+j4 are connected in the form of a delta to the three loads of a balanced 3- phase circuit. The line voltage is 120 Volts. Find (a) The phase current, (b) Power factor, (c) The volt-ampere in the circuit


In a delta connected 3 phase system

Vline = Vphase

Iline = √3 Iphase

Iphase = Vline / Z


Inductive reactance X = 4 ohm

Resistane R = 5 ohm

Impedane Zph = 5+j4 = 6.40∠ 38.66o


1) Iph = Vline / Z

           = 120 / 6.40

           = 18.75 A


2)  φ = 38.66

     Power factor cos φ = 0.78


3)  So Vline = Vph = 120 V

           Iph = 18.75 A 

Volt ampere = Vph x Iph

                    = 120 x 18.75 = 2250 VA    

04 February 2024

196.NA August 2022 Q.10

February 04, 2024 Posted by AK No comments

 A box-shaped vessel is 20 m long and 10 m wide. The weight of the vessel is uniformly distributed throughout the length and the draught is 2.5 m. The vessel contains ten evenly spaced double bottom tanks, each having a depth of 1m. Draw the shear force diagrams: 

With No.1 and No.10 tanks filled; 

With No.3 and No.8 tanks filled; 

With No.5 and No.6 tanks filled. 

Which ballast condition is to be preferred from the point of view of strength?


GIVEN 

L = 20m

B = 10m

d = 2.5m

D = 1m


Solution

So we have 10 tanks and total length = 20 m

So length of one tank l = 20/10 = 2m

mass added/tank = l x B x D x 1.025

                            = 2 x 10 x 1 x 1.025

                            = 20.5 t


total mass added = 20.5 x 2 = 41 t (2 tank filled condition)

mass/m = 20.5/2 = 10.25 t

weight = 10.25 g kN

buoyancy required = 41g/20 = 2.05 g

Excess load = 10.25 g - 2.05 g = 8.2 g kN


a)With No 1 and 10 tank filled

SF @ the end = 0

SF @ the end of No 10 = -8.2 g x 2 = -16.40 g kN

SF @ midship = -16.4 g + (2.05 g x 8) = 0

SF @ end of No 1 = 2.5 g x 8 = 16.4 g

SF @ fore end = 16.4 g - (8.2 g x 2) = 0



b)With No 3 and 8 tanks filled

SF @ the aft end = 0

SF @ the aft end of No 8 = 2.05 g x 4 = 8.2 g kN

SF @ the fore end of No 8 = 8.2 g - (8.2 g x 2) = -8.2 g kN

SF @ midship = -8.2 g + (2.05 g x 4) = 0

SF @ aft end of No 3 = 2.05 g x 4 = 8.2 g

SF @ fore end of No 3 = 8.2 g - (8.2 g x 2) = -8.2 g

SF @ fore end = 0



c)With No 5 and 6 tanks filled

SF @ the aft end  = 0

SF @ aft end of no 6 = 2.05 g x 8 = 16.4 g

SF @ fore end of no 5 = 16.4 g - (8.2 g x 4) = -16.4 g

SF @ the fore end = 0

The max shear force in b is half of the max values in case of b and c. So b is the best loaded condition



 


03 February 2024

195.NA August 2022 Q.9(b)

February 03, 2024 Posted by AK No comments

 The length of a ship is 7.6 times the breadth, while the breadth is 2.85 times the draught. The block coefficient is 0.69, prismatic coefficient 0.735, waterplane area coefficient 0.81 and the wetted surface area 7000 m2. The wetted surface area S is given by Denny's formula S = 1.7 Ld + (∇/d) Calculate: 

(a) displacement in tonne 

(b) area of immersed midship section 

(c) waterplane area


Given

L = 7.6b

b = 2.85d ; d = b/2.85

Cb = 0.69

Cp = 0.735

Cw = 0.81

S = 7000 m2


To find

1.Displacement

2. Am

3.Aw


Solution

We know that Cb = ∇ / (L x b x d)

 ∇ = Cb x L x b x d

    = 0.69 x 7.6b x b x b/2.85

  = 1.84b3  


S = 1.7 Ld + (∇/d) 

7000 = 1.7 x 7.6b x b/2.85 + (1.84b / (b/2.85)) 

         = 4.53b2   + 5.24b2

          = 9.77b2

       b = 26.76 m

L = 7.6 x 26.76 = 203.38 m

d = 26.76/2.85 = 9.389 m


∇ = 1.84 x b3

   = 35259.5


1. Displacement =  ∇ x density

                           = 35259.5 x 1.025

                           = 36140 t


2. Midship coefficient Cm = Cb/Cp

                                         = 0.69/0.735

                                         = 0.938


We know that Cm = Am / b x d

                       Am = Cm x b x d

                             = 0.938 x 26.76 x 9.389

                             = 235.9 m2


3. Cw = Aw / L x b

    Aw = Cw x L x b

          = 0.81 x 203.38 x 26.76

          = 4408m2