Recently asked questions in Kochi mmd and Class 2 Numerical solutions

Search

Showing posts with label Class 2 Naval. Show all posts
Showing posts with label Class 2 Naval. Show all posts

12 June 2024

209.NA November 2022 Q.10(b)

June 12, 2024 Posted by AK No comments

 A watertight bulkhead is 8m high and is supported by vertical stiffeners 700mm apart, connected at the tank top by brackets having 10 rivets 20mm diameter. The bulkhead is flooded to its top edge with sea water. Determine: (a) Shearing force at top of stiffeners, (b) Shear stress in the rivets, (c) Position of zero shear.










11 June 2024

208.NA November 2022 Q.9(b)

June 11, 2024 Posted by AK No comments

 A vessel, when floating at a draught of 3.6 m has a displacement of 8172 tonne, KB 1.91 m and LCB 0.15 m aft of midships. From the following information, calculate the displacement, KB and position of the LCB for the vessel when floating at a draught of 1.2rn









207.NA November 2022 Q.8(b)

June 11, 2024 Posted by AK No comments

  The ½ ordinates of a water plane at 15m intervals, commencing from aft, are 1, 7, 10.5, 11, 11, 10.5, 8, 4 and 0 m. Calculate:

i. TPC

ii. Distance of the centre of flotation from midships

iii. Second moment of area of the water plane about a transverse axis through the centre of flotation.

 IF YOU ARE NOTICING ANY ERROR KINDLY COMMENT BELOW

Solution

½ ordinate

SM

Product of area

lever

Product for 1st moment

lever

Product for 2nd moment

1

1

1

+4

+4

+4

+16

7

4

28

+3

+84

+3

+252

10.5

2

21

+2

+42

+2

+84

11

4

44

+1

+44

+1

+44

11

2

22

0

0

0

0

10.5

4

42

-1

-42

-1

+42

8

2

16

-2

-32

-2

+64

4

4

16

-3

-48

-3

+144

0

1

0

-4

0

-4

0

 

 

∑m = 190

 

∑m1 = +52

 

∑m2 = +646

 

i) Common interval h = 15m

Area of water plane Aw = 2 x ((h/3) x product of area ) --------- 2 given because 1/2 ordinates are given

                                       = 2 x (15/3) x 190

                                       = 1900 m3

TPC =  (Aw x density of water ) / 100

        = (1900 x 1.025) / 100

        = 19.475


ii)Distance of the centre of flotation from midships = (h x product of first moment) / product of area

                                                                               X  = (15 x +52) / 190

                                                                                X = 4.11 m towards aft (As value is +ve)


iii) Second moment about midship Im = (2/3) x hx Product of 2nd moment

                                                              = (2/3) x 15x 646

                                                              = 1453500 m4

 

Second moment of area about centroid = Im - (Aw x X2)

                                                               = 1453500 - (1900 x 4.112)

                                                               = 1421405 m4

206.NA November 2022 Q.7(b)

June 11, 2024 Posted by AK No comments

 A 6m model of a ship has a wetted surface area of 7m2 and when towed in fresh water at 3knots has a total resistance of 35 N. Calculate the effective power of the ship, 120 m long, at its corresponding speed. n=1.825. f from formula SCF=1.15





205.NA November 2022 Q.6(b)

June 11, 2024 Posted by AK No comments

 A ship 150m long and 8.5m draught has a rudder whose area is one sixtieth of the middle-line plane and diameter of stock 320mm. Calculate the maximum speed at which the vessel may travel if the maximum allowable stress is 70 MN/m? the centre of stock 0.9m from the centre of effort and the maximum rudder angle is 35 degrees.




204.NA October 2022 Q.9(b)

June 11, 2024 Posted by AK No comments

 A ship 85 m long displaces 8100 tonne when floating in seawater at draughts of 5.25 m forward & 5.55 m aft. TPC 9.0, GML 96 m, LCF 2 m aft of midships. It is decided to introduce water ballast to completely submerge the propeller & a draught aft of 5.85 m is required. A ballast tank 33 m aft of midships is available. Find the least amount of water required & the final draught forward.

IF YOU ARE NOTICING ANY ERROR KINDLY COMMENT BELOW

 

 Given

L = 85 m

Δ = 8100 t

df = 5.25 m

da = 5.55 m

TPC = 9

GML = 96m

LCF = 2 m

 

To find

i) Amount of water required to make draught aft 5.85 m

ii) Final Forward draught

 

Solution

 We know that moment to change trim one cm, MCT1 cm = (Δ x GML) / (100 x L)

                                                                                             = (8100 x 96) / (100 x 85)

                                                                                             = 91.48 t m

 

We know that trimming moment = mass moved x distance moved

In question it is given that ballast tank is 33 m aft of midship and LCF is 2 m aft of midship.

i) So distance at which water has to be taken = 33 - 2 = 31 m

So trimming moment = m x 31 

Change in trim = trimming moment / MCT1 cm

                         = (31 x m) / 91.48

                      t  =  0.339 x m -----------------------------------------------(1)


We know that bodily sinkage = mass added / TPC

                                                = m / 9 

                                                = 0.111 x m -------------------------------(2)


Distance from LCF to aft = (85/2) - 2 (As 85/2 will be mid ship. then 2 m from mid to LCF)

                                  WF = 40.5 m

Change in draught aft = (t / L) x WF

                                    = {(0.339 x m) / 85} x 40.5

                                    = 0.161 x m ------------------------------------------(3)


So new draught aft = old draught + bodily sinkage + change in draught

5.85 = 5.55 + 0.111 m + 0.161 m

5.85 = 5.55 + 0.272 m

0.272 m = 0.3

m = 1.10 = 110 t (Bodily sinkage and change in trim are in cm)

So amount of water required = 110 t


ii) So Distance from LCF to fwd = (85/2) + 2 (As 85/2 will be mid ship. then 2 m from mid to LCF)

                                                FL = 44.5 m

Change in draught forward = - (t / L) x FL

                                            = -{(0.339 x m) / 85} x 44.5

                                            = - {(0.339 x 110) / 85} x 44.5

                                            = -  19.52 cm


So new draught fwd = old draught + bodily sinkage + change in draught

                                 = 5.25 + (0.111 x 110) - 0.195

                                 = 5.25 + 0.122-0.195

                                 = 5.177 m

203.NA October 2022 Q.8(b)

June 11, 2024 Posted by AK No comments

 A ship 160m long and 8700 tonne displacement floats at a waterline with

Station            AP        ½         1         2         3         4         5         6         7         71/2      FP
½ ordinate       0        2.4       5.0      7.3      7.9       8.0      8.0       7.7     5.5        2.8      0m
While floating at this waterline, the ship develops a list of 100 due to instability. Calculate the
negative metacentric height when the vessel is upright in this condition.


If you are noticing some error in problems kindly comment below.Thanks

Given

L = 160 m
Δ = 8700 t
List = 10 deg

To find

1.Negative metacentric height

Solution


½ Ordinates
½ Ordinate3
SM
Product
0
0
1/2
-
2.4
13.82
2
27.64
5.0
125.00
3/2
187.5
7.3
389.02
4
1556.08
7.9
493.04
2
986.08
8.0
512.00
4
2048.00
8.0
512.00
2
1024.00
7.7
456.53
4
1826.12
5.5
166.38
3/2
249.57
2.8
21.95
2
43.9
0
0
1/2
-


TOTAL
7948.9

Common interval h = L/ no of equidistant ordinates
There are 8 equidistant sapces

h = 160 / 8
   = 20 m

Second moment of area about centre line I = (h / 9) x Total products
Since half ordinates are given.For full ordinates

I =  2 x (h/9) x Total products
  = 2 x (20/9) x 7948.9
  = 35328.44 m4

Distance from B to M, BM = (I / Δ) x 1.025
                                            = (35328.44 / 8700) x 1.025 
                                            = 4.162 m

At angle of loll tan θ = √(-2 GM/BM)
Squaring both sides tan2 θ = - 2 GM/ BM
                                    GM = - (tan2θ x BM) / 2
                                            = - 0.17632 x 4.162 / 2

Negative metacentric height = - 0.0646 m  

202.NA October 2022 Q.7(b)

June 11, 2024 Posted by AK No comments

 A ship 120m long displaces 10500 tonne and has a wetted surface area of 3000m2 . At 15 knots the shaft power is 4100KW, propulsive coefficient 0.6 and 55% of the thrust is available to overcome frictional resistance; calculate the shaft power required for a similar ship 140m long at the corresponding speed. ∫ = 0.42 and n = 1.825




201.NA October 2022 Q.6(b)

June 11, 2024 Posted by AK No comments

 An oil tanker 160m long and 22m beam floats at a draught of 9m in seawater. Cw is 0.865. The midships section is in the form of a rectangle with 1.2m radius at the bilges. A midships tank 10.5m long has twin longitudinal bulkheads and contains oil of 1.4m3/t to a depth of 11.5m. The tank is holed to the sea for the whole of its transverse section. Find the new draught


If you are noticing some error in problems kindly comment below.Thanks

Given

L = 160 m
B = 22 m
d = 9 m
Cw = 0.865
For the tank
Lt = 10.5 m
dt = 11.5 m
r = 1.2 m

 To find

1.New draught

Solution

Cw = Aw /Lx B
Area of water plane, Aw = Cw x L x B
                                        = 0.865 x 160 x 22
                                        = 3045.8 m2

It is given that the tank is holed.
Therefore area lost = Lt x B
                               = 10.5 x 22
                               = 231 m2

Intact water plane area = Aw - Area lost
                                     = 3045.8 - 231
                                     = 2814.8 m2



We need to find out area of space where oil is occupied.
So first we can consider the bilge part. Both bilge part together form a half circle.(Section (3))
Therefore Area of circle = π x r2

Since it is a half circle Area = (1/2) x π x r2
                                             = (1/2) x 3.14 x 1.22
              Area of section (3) = 2.26 m2 -------------------------------------------(1)

Consider section (2)
Bredth = 22 - (1.2 + 1.2)
            = 19.6 m
depth = 1.2 m
So area of section (2) = 19.6 x 1.2
                                   = 23.52 m2--------------------------------------------------(2)

Consider section (1)
Breadth = 22 m
Depth = 11.5 - 1.2
           = 10.3 m2
So area of section (1) = 22 x 10.3
                                   = 226.6 m2---------------------------------------------------(3)

Total area of oil = (1) + (2) + (3)
                          = 226.6 + 23.52 + 2.26
                          = 252.38 m2

Area of immersion = Total area of oil - (Breadth x Depth of non immersion)
                               = 252.38 - (22 x (11.5 - 9))
                               = 197.38 m2

As we know that density of oil = 1.4 m3/t
Density = Volume  / mass (Because the unit is given as m3/t)

Total mass of oil = Volume of oil / Density
                            = Area x Lt / Density
                            = 252.38 x 10.5 / 1.4
                            = 1892.85 t

So the compartment is holed we can assume that buoyancy is lost.

Mass of buoyancy lost = Area of immersion x Lt x SW density
                                     = 197.38 x 10.5 x 1.025
                                     = 2124.30 t

Net loss in buoyancy = Mass of buoyancy lost - Total mass of oil
                                   = 2124.30 - 1892.85
                                   = 231.55 t

Equivalent volume comparing to SW = Mass / density
                                                             = 231.55 / 1.025
                                                             = 225.9 m3

Increase in draught = Volume lost in buoyancy / Area of intact water plane
                                = 225.9 / 2814.8
                                = 0.0802 m

Increase in draught = 9 + 0.0802
                                = 9.08 m