Recently asked questions in Kochi mmd and Class 2 Numerical solutions

Search

27 November 2018

12.NA August 2018 Q.10

November 27, 2018 Posted by AK 3 comments
An oil tanker 160m long and 22m beam floats at a draught of 9m in seawater. Cw is 0.865. The midships section is in the form of a rectangle with 1.2m radius at the bilges. A midships tank 10.5m long has twin longitudinal bulkheads and contains oil of 1.4m3/t to a depth of 11.5m. The tank is holed to the sea for the whole of its transverse section. Find the new draught

If you are noticing some error in problems kindly comment below.Thanks

Given

L = 160 m
B = 22 m
d = 9 m
Cw = 0.865
For the tank
Lt = 10.5 m
dt = 11.5 m
r = 1.2 m

 To find

1.New draught

Solution

Cw = Aw /Lx B
Area of water plane, Aw = Cw x L x B
                                        = 0.865 x 160 x 22
                                        = 3045.8 m2

It is given that the tank is holed.
Therefore area lost = Lt x B
                               = 10.5 x 22
                               = 231 m2

Intact water plane area = Aw - Area lost
                                     = 3045.8 - 231
                                     = 2814.8 m2



We need to find out area of space where oil is occupied.
So first we can consider the bilge part. Both bilge part together form a half circle.(Section (3))
Therefore Area of circle = π x r2

Since it is a half circle Area = (1/2) x π x r2
                                             = (1/2) x 3.14 x 1.22
              Area of section (3) = 2.26 m2 -------------------------------------------(1)

Consider section (2)
Bredth = 22 - (1.2 + 1.2)
            = 19.6 m
depth = 1.2 m
So area of section (2) = 19.6 x 1.2
                                   = 23.52 m2--------------------------------------------------(2)

Consider section (1)
Breadth = 22 m
Depth = 11.5 - 1.2
           = 10.3 m2
So area of section (1) = 22 x 10.3
                                   = 226.6 m2---------------------------------------------------(3)

Total area of oil = (1) + (2) + (3)
                          = 226.6 + 23.52 + 2.26
                          = 252.38 m2

Area of immersion = Total area of oil - (Breadth x Depth of non immersion)
                               = 252.38 - (22 x (11.5 - 9))
                               = 197.38 m2

As we know that density of oil = 1.4 m3/t
Density = Volume  / mass (Because the unit is given as m3/t)

Total mass of oil = Volume of oil / Density
                            = Area x Lt / Density
                            = 252.38 x 10.5 / 1.4
                            = 1892.85 t

So the compartment is holed we can assume that buoyancy is lost.

Mass of buoyancy lost = Area of immersion x Lt x SW density
                                     = 197.38 x 10.5 x 1.025
                                     = 2124.30 t

Net loss in buoyancy = Mass of buoyancy lost - Total mass of oil
                                   = 2124.30 - 1892.85
                                   = 231.55 t

Equivalent volume comparing to SW = Mass / density
                                                             = 231.55 / 1.025
                                                             = 225.9 m3

Increase in draught = Volume lost in buoyancy / Area of intact water plane
                                = 225.9 / 2814.8
                                = 0.0802 m

Increase in draught = 9 + 0.0802
                                = 9.08 m

3 comments:

  1. In section 1 u have put the unit for depth as m square and I think it's just metre !! Correct me if I'm wrng sir

    ReplyDelete
  2. Value for equation 3 is 226.6 instead it's wrongly printed as 2.26

    ReplyDelete
  3. Total mass of oil = Volume of oil / Density
    = Area x Lt / Density
    = 252.38 x 10.5 / 1.4
    = 1892.85 tonne

    Here formula used is wrong for calculating mass. Mass = density * volume

    ReplyDelete