Recently asked questions in Kochi mmd and Class 2 Numerical solutions

Search

29 November 2018

16.NA November 2018 Q.6(B)

November 29, 2018 Posted by AK No comments
The immersed cross-sectional area of a ship 120m long, commencing from aft are 2,40,79,100,103,104,104,103,97,58 and 0 m2 calculate - (i) Displacement; (ii) Longitudinal position of the centre of buoyancy

          If you are noticing some error in problems kindly comment below.Thanks

Given

L = 120 m

To find


i) Displacement 
ii) Longitudinal position of the centre of buoyancy

Solution

Area
SM
Product for volume
Lever
Product for 1st moment
2
1
2
+5
+10
40
4
160
+4
+640
79
2
158
+3
+474
100
4
400
+2
+800
103
2
206
+1
+206
104
4
416
0
Σma = +2130
104
2
208
-1
-208
103
4
412
-2
-824
97
2
194
-3
-582
58
4
232
-4
-928
0
1
0
-5
0


Σv = 2388

Σmf = -2542

It is given that L = 120 m and there are 10 equidistant spaces. So common interval
h = 120 / 10 
   = 12 m

i) We know that displacement = Density x Under water volume ----------------(1)

   But Under water volume = (h/3) x Σv
                                          = (12/3) x 2388
                                          = 9552 m3

   (1) -------------------------->
    
   Displacement = 1.025 x 9552
                          = 9790.8 tonne

ii) Centre of buoyancy from midship = h x (Σma + Σmf) / Σv
                                                         = 12 x (2130 - 2542 ) / 2388
                                                         = 2.070 m forward 

   NOTE : If Σma is greater than Σmf , the buoyancy will be forward of midship.

0 comments:

Post a Comment