Recently asked questions in Kochi mmd and Class 2 Numerical solutions

Search

27 November 2018

7.NA October 2018 Q.9 (B)

November 27, 2018 Posted by AK No comments
A ship of 11200 tonne displacement has a double bottom tank containing oil. Whose centre of gravity is 16.5m forward and 6.6m below the centre of gravity of the ship? When the oil is used the ship’s centre of gravity moves 380mm calculate - (i) The mass of oil used; (ii) The angle which the centre of gravity moves relative to the horizontal


If you are noticing some error in problems kindly comment below.Thanks

Given 

△ = 11200 t
Shift in CG = 380 mm











To find 

1. Mass of oil m
2. angle θ

Solution 

From the diagram Gg2  = Ga2 + ag2
                  Distance Gg   = Square root of (Ga2 + ag2)
                                     = Square root of (16.52 + 6.62)
                                     = 17.77 m

1. Shift in CG = (mass of oil x Distance) / Final 
                      = (m x Gg)  / (△ - m)
            0.380 = (m x 17.77) / (11200 - m)

(11200 x 0.380) - (0.380 x m) = m x 17.77
                                      4256 = m (0.38 + 17.77)
                                           m = 4256 / 18.15
                         mass of oil m = 234.5 t

2. From diagram tan θ = ag / Ga
                                    = 6.6 / 16.5
                                    = 0.4

                       Angle θ = 21801


0 comments:

Post a Comment