Recently asked questions in Kochi mmd and Class 2 Numerical solutions

Search

27 November 2018

9.NA August 2018 Q.7 (B)

November 27, 2018 Posted by AK 6 comments
A ship of 8000 tonne displacement, 110 m long, floats in sea water of 1.024 t/m3 at draughts of 6 m forward and 6.3 m aft. The TPC is 16, LCB 0.6 m aft of midships, LCF 3 m aft of midships and MCT1 cm 65 tonne m, the vessel now moves into fresh water of 1.000 t/m3. Calculate the distance a mass of 50 tonne must be moved to bring the vessel to an even keel and determine the final draught.

              If you are noticing some error in problems kindly comment below.Thanks

Given

L = 110 m
Δ = 8000 t
የsw = 1.024 t/m3
df = 6.0 m
da = 6.3 m
TPC = 16
LCB = 0.6 m aft of midship
LCF = 3.0 m aft of midship
MCT1 cm = 65 t
የfw = 1.000 t/m3
m = 50 t

To find

1. The distance a mass of 50 tonne must be moved to bring the vessel to an even keel, d
2. The final draught.

Solution

We know that  TPC = (Aw / 100) x የsw
                           16 = (Aw / 100) x 1.024
Area of water plane, Aw =  (16 x 100) / 1.024
                                       = 1562.5 m2

Change in mean draught = ((100 x Δ) / Aw) x (୧sw - ୧fw) / (୧sw x ୧fw)
                                         = (100 x 8000) / 1562.5) x (1.024 - 1.000) / (1.024 x 1.000)
                                         = 12 cm increase (As ship goes from SW to FW draught increases)

Distance from LCF to LCB = LCF - LCb ( Both aft of midship)
                                      FB = 3.0 - 0.6
                                           = 2.4 m

Shift in COB  = ((୧sw - ୧fw) / ୧sw) x FB  ------------------------------------- (1)
                      = ((1.024 - 1.000) / 1.024) x 24
              BB1 = 0.05625 m aft

Change in trim = (Δ x FB (୧sw - ୧fw)) / (MCT1 cm x ୧sw)
Substituting (1) in above equation
Change in trim = (Δ x BB1) / MCT1 cm
                        = (8000 x 0,05625) / 65
                      t = 6.92 cm by head (As ship moves from SW to FW always trim by head)

Initial trim = da - df
                = 6.3 - 6.0
                = 30 cm

New trim = Initial trim - Change in trim
               = 30 - 6.92
               = 23.08 cm

1. We know that new trim = (m x d) / MCT1 cm
                               23.08 = (50 x d) / 65
         Distance moved , d = (23.08 x 65) / 50
                                         = 30 cm

2. Change in draught Fwd = (Trim/L) x (L/2 + LCF)
                                          = (30/110) x (110/2 + 3)
                                          = 15.81 cm

    Final draught = Initial draught FWD + change in mean draught + draught change FWD
                          = 6.0 + 0.012 + 0.1581
                          = 6.278 m










6 comments:

  1. Hello, how total change in trim was taken as 30cm when new trim was 23.08 cm. Please explain the calculation taken for finding fwd change in draught(30cm is taken)

    ReplyDelete
    Replies
    1. For finding change in draught we need to consider the initial trim. In question it is given that fwd draught is 6 m and aft is 6.3 m. so trim will be 0.3 m = 30 cm

      Delete
  2. Replies
    1. All parameters are in cm

      Delete
    2. When applying MCTc to trimming moment = ∆ x d.
      'd' is in meters & change of trim is in cm.
      So answer is 30 m.

      Delete
  3. FINAL DRAUGHT=6.0M+.12M+.1581M =6.278M RGT

    ReplyDelete