A 440 load of 400 KW at 0.8 (lagging) power factor is jointly supplied by two alternator A and B. The KW load on A is 150 KW and the KVAr load on B is 150 KVAr (lagging). Determine the KW load on B, the KVAr load on A, the power factor of operation on each machine and the current loading of each machine.
If you are noticing some error in problems kindly comment below.Thanks
Given
Ptotal = 400 KW
PFtotal Cos ø = 0.8 , So Sin ø = 0.6
Power of A, Pa = 150 KW
Reactive power of B, RPb = 150 KVAr
To find
1. KW load on B, Pb
2. Reactive load on A, RPa
3. Power factor
4. Current loading
Solution
Total apparent power KVAtotal = Ptotal / PFtotal
= 400 / 0.8
= 500 KVA
= 300 KVAr
1. KW load on B, Pb = Ptotal - Pa
= 400 - 150
= 250 KW
2. Reactive load on A, RPa = KVArtotal - KVArb
= 300 - 150
= 150
Apparent load on A, KVAa = √(KWa2 + KVAra2)
= √(1502 + 1502)
= 212.1 KVA
Apparent load on B, KVAb = √(KWb2 + KVArb2)
= √(2502 + 1502)
= 291.5 KVA
3. Power factor of A, PFa = KWa / KVAa
= 150 / 212.1
= 0.707
Power factor of B, PFb = KWb / KVAb
= 250 / 291.5
= 0.857
Apparent load = √(3) x V x I
4. Current on A, Ia = KVAa / √(3) x V )
= 212100 / √(3) x 440)
= 279 A
Current on B, Ib = KVAb / √(3) x V )
= 291500 / √(3) x 440)
= 382.5 A
If you are noticing some error in problems kindly comment below.Thanks
Given
Ptotal = 400 KW
PFtotal Cos ø = 0.8 , So Sin ø = 0.6
Power of A, Pa = 150 KW
Reactive power of B, RPb = 150 KVAr
To find
1. KW load on B, Pb
2. Reactive load on A, RPa
3. Power factor
4. Current loading
Solution
Total apparent power KVAtotal = Ptotal / PFtotal
= 400 / 0.8
= 500 KVA
Total reactive power KVArtotal = KVAtotal x Sin ø
= 500 x 0.6= 300 KVAr
1. KW load on B, Pb = Ptotal - Pa
= 400 - 150
= 250 KW
2. Reactive load on A, RPa = KVArtotal - KVArb
= 300 - 150
= 150
Apparent load on A, KVAa = √(KWa2 + KVAra2)
= √(1502 + 1502)
= 212.1 KVA
Apparent load on B, KVAb = √(KWb2 + KVArb2)
= √(2502 + 1502)
= 291.5 KVA
3. Power factor of A, PFa = KWa / KVAa
= 150 / 212.1
= 0.707
Power factor of B, PFb = KWb / KVAb
= 250 / 291.5
= 0.857
Apparent load = √(3) x V x I
4. Current on A, Ia = KVAa / √(3) x V )
= 212100 / √(3) x 440)
= 279 A
Current on B, Ib = KVAb / √(3) x V )
= 291500 / √(3) x 440)
= 382.5 A
0 comments:
Post a Comment