Recently asked questions in Kochi mmd and Class 2 Numerical solutions

Search

25 September 2021

144.NA September 2021 Q.8(b)

September 25, 2021 Posted by AK 2 comments

 A ship of 8000 tonne displacement floats upright in seawater. KG = 7.6m and GM = 0.5m. A tank, KG is 0.6m above the keel and 3.5m from the centreline, contains 100 tonne of water ballast. Neglecting the free surface effect, calculate the angle which the ship will heel, when the ballast water is pumped out.



If you are noticing some error in problems kindly comment below.Thanks

Given

Δ = 8000 t
KG =  7.6m
GM = 0.5m

For tank
KGtank = 0.6m
m = 100 t

To find

Angle of heel

Solution

KM = KG + GM 
      = 7.6 + 0.5
      = 8.1 m

New KG = (Δ x KG - m x KGtank) / (Δ - m)
              = ((8000 x 7.6) - (100 x 0.6) / (8000 - 100)
              = 7.688 m

New GM = KM - New KG
               = 8.1 - 7.688
               = 0.412 m

Heeling moment of water = m x distance
                                         = 100 x 3.5
                                         = 350

Heeling moment of ship   = New displacement x New GM
                                         = 7900 x 0.412
                                         = 3254.8

                               tan θ  = Heeling moment of water / Heeling moment of ship
                                         = 350 / 3254.8
                                         = 0.1075

               Angle of heel θ  = 60131

2 comments:

  1. Ballasting means adding of wt. and in that condition while calculating kg, weights should be added or not in denominator ?

    ReplyDelete
    Replies
    1. It's clearly saying heels angle after ballast water pump out
      So weight to be subtracted

      Delete