Recently asked questions in Kochi mmd and Class 2 Numerical solutions

Search

08 June 2022

167.MET February 2022 Q.7

June 08, 2022 Posted by AK 5 comments

 With reference to adjoining circuit calculate following. 

(a) Current in each branch of the circuit

(b) Total current






IF YOU ARE NOTICING ANY ERROR KINDLY COMMENT BELOW

Given

V = 100 V

f = 50 Hz

R = 50 ohm

L = 0.15 H

C = 100 micro F


To find

(a) Current in each branch of the circuit

(b) Total current


Solution

The total current, IS drawn from the supply is equal to the vector sum of the resistive, inductive and capacitive current, not the mathematic sum of the three individual branch currents, as the current flowing in resistor, inductor and capacitor are not in same phase with each other; so they cannot be added arithmetically.

Apply Kirchhoff’s current law, which states that the sum of currents entering a junction or node, is equal to the sum of current leaving that node we get,


Let V is the supply voltage.
IS is the total source current.
IR is the current flowing through the resistor.
IC is the current flowing through the capacitor.
IL is the current flowing through the inductor.


Inductive reactance XL = 2πfL

                                      = 2 x 3.14 x 50 x 0.15

                                      = 47.1 ohm

Capacitive reactance Xc = 1 / (2πfc)

                                        = 1 / (2 x 3.14 x 50 x 0.001)

                                        = 3.18 ohm

a) Current through resistor IR = V/R

                                               = 100/50

                                               = 2 A

    Current through Inductor IL = V/XL

                                                = 100/47.1

                                                = 2.12 A

    Current through capacitor Ic = V/Xc

                                                  = 100/3.18

                                                  = 31.44 A


b)  Total current IS = [IR2 + (I- IC)2]

                                  =  [22 + (2.12 - 31.44)2]

                              = 29.38 A

              Ff

2πfL=2×3.14×100×0.02

5 comments:

  1. XC value should be 31.8...1/(2*3.14*50*1*10power -6)=31.8

    ReplyDelete
  2. total current Is =1.72 A PLEASE TELL ME THIS CORRECT ANSWER.

    ReplyDelete
  3. Total current Is = 2.245A

    ReplyDelete
  4. Capacitive reactance 0.0001 not 0.001

    ReplyDelete
  5. THE VALUE OF Xc is 31.85 Ohms, Ic=3.14A, Total current Is = 2.25A

    ReplyDelete