Recently asked questions in Kochi mmd and Class 2 Numerical solutions

Search

09 June 2022

174.NA March 2022 Q.8

June 09, 2022 Posted by AK 2 comments

 A ship 160m long and 8700 tonne displacement floats at a waterline with

Station            AP        ½         1         2         3         4         5         6         7         71/2      FP
½ ordinate       0        2.4       5.0      7.3      7.9       8.0      8.0       7.7     5.5        2.8      0m
While floating at this waterline, the ship develops a list of 100 due to instability. Calculate the
negative metacentric height when the vessel is upright in this condition.


If you are noticing some error in problems kindly comment below.Thanks

Given

L = 160 m
Δ = 8700 t
List = 10 deg

To find

1.Negative metacentric height

Solution


½ Ordinates
½ Ordinate3
SM
Product
0
0
1/2
-
2.4
13.82
2
27.64
5.0
125.00
3/2
187.5
7.3
389.02
4
1556.08
7.9
493.04
2
986.08
8.0
512.00
4
2048.00
8.0
512.00
2
1024.00
7.7
456.53
4
1826.12
5.5
166.38
3/2
249.57
2.8
21.95
2
43.9
0
0
1/2
-


TOTAL
7948.9

Common interval h = L/ no of equidistant ordinates
There are 8 equidistant sapces

h = 160 / 8
   = 20 m

Second moment of area about centre line I = (h / 9) x Total products
Since half ordinates are given.For full ordinates

I =  2 x (h/9) x Total products
  = 2 x (20/9) x 7948.9
  = 35328.44 m4

Distance from B to M, BM = (I / Δ) x 1.025
                                            = (35328.44 / 8700) x 1.025 
                                            = 4.162 m

At angle of loll tan θ = √(-2 GM/BM)
Squaring both sides tan2 θ = - 2 GM/ BM
                                    GM = - (tan2θ x BM) / 2
                                            = - 0.17632 x 4.162 / 2

Negative metacentric height = - 0.0646 m  

2 comments:

  1. referring to REEDS NAVAL ARCH. correction required.

    SM is to be taken as 1 4 2 4 2 4 2 4 2 4 1
    so product = 8166.12

    BM = 3.421m

    GM= -0.053m

    ReplyDelete
  2. as per above correction, h= 160/10=16m

    ReplyDelete