Recently asked questions in Kochi mmd and Class 2 Numerical solutions

Search

12 February 2024

198.NA September 2022 Q.7(b)

February 12, 2024 Posted by AK No comments

 A ship of 22000 tonne displacement is 160 m long and MCTI cm 280tonne m, waterplane area 3060 m2 centre of buoyancy 1 m aft of midships and centre of flotation 4 m aft of midships. It floats in water of 1.007 t/ m3 at draughts of 8.15 m forward and 8.75 m aft. Calculate the new draughts if the vessel moves into sea water of 1.026 t/ m2 Calculate the metacentric height of the vessel.


Given 

Δ = 22000 t

L = 160 m

MCT1 = 280 tm

Aw = 3060 m2

COB = 1 m aft

COF = 4 m aft

ƍ = 1.007 t/m3

df = 8.15 m

da = 8.75 m

ƍs = 1.026 t/m3


To find

1.df new

2.da new

3. GM


Solution

Change in mean draught = ((100 x Δ) / Aw) x (୧s - ୧) / (୧s x ୧)
                                        = (100 x 22000)/3060) x (1.026 - 1.007) / (1.026 x 1.007)

                                        = 13.22 cm reduction (As moves to SW)


Distance from COF to COB = COF - COB (As both are aft of midship)
                                       FB = 4 - 1
                                             = 3 m


Change in trim =  (Δ x FB (୧s - ୧)) / (MCT1 cm x ୧s)
                        = (22000 x 3 (1.026 - 1.007)) / (280 x 1.026)

                    t   = 4.5 cm by stern (Ship moves from fw to sw trim by stern)


Draught change FWD = - t/L (L/2 + COF)
                                    = - 4.5 / 160 x (80 + 4)

                                    = - 2.36 cm


Draught change AFT = + t/L (L/2 - COF)
                                    = + 4.5 / 160 x (80 - 4)

                                    = + 2.14 cm


1. df new = Initial draught FWD + change in mean draught + draught change FWD

                   = 8.15 - 0.132 - 0.024

                   = 7.994 m

2. da new  = Initial draught AFT + change in mean draught + draught change AFT

                  = 8.75 - 0.132 + 0,021

                  = 8.639 m 

3.MCT1 cm = Δ x GML / 100 x L           

          3060 =(22000 x GM) / (100 x 160)

            GM = 2225.5 m 



0 comments:

Post a Comment