Recently asked questions in Kochi mmd and Class 2 Numerical solutions

Search

11 June 2024

203.NA October 2022 Q.8(b)

June 11, 2024 Posted by AK No comments

 A ship 160m long and 8700 tonne displacement floats at a waterline with

Station            AP        ½         1         2         3         4         5         6         7         71/2      FP
½ ordinate       0        2.4       5.0      7.3      7.9       8.0      8.0       7.7     5.5        2.8      0m
While floating at this waterline, the ship develops a list of 100 due to instability. Calculate the
negative metacentric height when the vessel is upright in this condition.


If you are noticing some error in problems kindly comment below.Thanks

Given

L = 160 m
Δ = 8700 t
List = 10 deg

To find

1.Negative metacentric height

Solution


½ Ordinates
½ Ordinate3
SM
Product
0
0
1/2
-
2.4
13.82
2
27.64
5.0
125.00
3/2
187.5
7.3
389.02
4
1556.08
7.9
493.04
2
986.08
8.0
512.00
4
2048.00
8.0
512.00
2
1024.00
7.7
456.53
4
1826.12
5.5
166.38
3/2
249.57
2.8
21.95
2
43.9
0
0
1/2
-


TOTAL
7948.9

Common interval h = L/ no of equidistant ordinates
There are 8 equidistant sapces

h = 160 / 8
   = 20 m

Second moment of area about centre line I = (h / 9) x Total products
Since half ordinates are given.For full ordinates

I =  2 x (h/9) x Total products
  = 2 x (20/9) x 7948.9
  = 35328.44 m4

Distance from B to M, BM = (I / Δ) x 1.025
                                            = (35328.44 / 8700) x 1.025 
                                            = 4.162 m

At angle of loll tan θ = √(-2 GM/BM)
Squaring both sides tan2 θ = - 2 GM/ BM
                                    GM = - (tan2θ x BM) / 2
                                            = - 0.17632 x 4.162 / 2

Negative metacentric height = - 0.0646 m  

0 comments:

Post a Comment